Increased expression of miR-24 is associated with acute myeloid leukemia with t(8;21).
نویسندگان
چکیده
This study was designed to learn the expression status of miR-24 and its clinical relevance in patients with acute myeloid leukemia (AML). We detected the miR-24 expression levels using real-time quantitative PCR in 84 AML patients and investigated the clinical significance of miR-24 expression in AML. There was no difference in clinical parameters between cases with miR-24 high expression and with miR-24 low expression. The frequency of miR-24 high expression was higher in patients with t(8;21) than in others (82% (9/11) versus 44% (32/72), P=0.026). The levels of miR-24 expression had no correlation with the mutations of nine genes (FLT3-ITD, NPM1, C-KIT, IDH1/IDH2, DNMT3A, N/K-RAS and C/EBPA). Meanwhile, among the group who obtained CR, the cases with miR-24 high expression had no difference in overall survival (OS) and relapse-free survival (RFS) than those with miR-24 low expression (P=0.612 and 0.665, respectively). These findings implicated that miR-24 high regulation is a common event in AML with t(8;21), and it might serve as a novel and selective therapeutic target for the treatment of AML with t(8;21).
منابع مشابه
Geographic Heterogeneity of the AML1-ETO Fusion Gene in Iranian Patients with Acute Myeloid Leukemia
Background: The human AML1 gene, located on chromosome 21, can be fused to the AML1- eight-twenty-one (ETO) oncoprotein on chromosome eight, resulting in a t(8;21)(q22;q22) translocation. Acute myeloid leukemia (AML) associated with this translocation is considered a distinct AML with a favorable prognosis. Due to the various incidences of the translocation, which is associated with geographic ...
متن کاملCell, Tumor, and Stem Cell Biology Altered Runx1 Subnuclear Targeting Enhances Myeloid Cell Proliferation and Blocks Differentiation by Activating a miR-24/MKP-7/MAPK Network
Disruption of Runx1/AML1 subnuclear localization, either by a single amino acid substitution or by a chromosomal translocation [e.g., t(8;21)], is linked to the etiology of acute myeloid leukemia (AML). Here, we show that this defect induces a select set of micro-RNAs (miR) in myeloid progenitor cells and AML patients with t(8;21). Both Runx1 and the t(8;21)encoded AML1-ETO occupy the miR-24-23...
متن کاملAltered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network.
Disruption of Runx1/AML1 subnuclear localization, either by a single amino acid substitution or by a chromosomal translocation [e.g., t(8;21)], is linked to the etiology of acute myeloid leukemia (AML). Here, we show that this defect induces a select set of micro-RNAs (miR) in myeloid progenitor cells and AML patients with t(8;21). Both Runx1 and the t(8;21)-encoded AML1-ETO occupy the miR-24-2...
متن کاملAn AML1-ETO/miR-29b-1 regulatory circuit modulates phenotypic properties of acute myeloid leukemia cells
Acute myeloid leukemia (AML) is characterized by an aggressive clinical course and frequent cytogenetic abnormalities that include specific chromosomal translocations. The 8;21 chromosomal rearrangement disrupts the key hematopoietic RUNX1 transcription factor, and contributes to leukemia through recruitment of co-repressor complexes to RUNX1 target genes, altered subnuclear localization, and d...
متن کاملThe role of microRNA in acute/chronic, myeloid/lymphocytic leukemia
MicroRNAs are small, non-coding sequences that regulate gene expression by inducing degradation or translational inhibition of target mRNAs. These molecules control many intracellular physiological and pathological processes.Abnormal expression of these moleculs has been described in different cancers including hematopoietic cancers. According to the type of cancer and the stage, miRNA’s expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of clinical and experimental pathology
دوره 7 11 شماره
صفحات -
تاریخ انتشار 2014